ACS Nano, 2016, 10 (4), 4459-4471
Graphene oxide nanosheets reshape synaptic function in cultured brain networks
Graphene offers promising advantages for biomedical applications. However, adoption of graphene technology in biomedicine also poses important challenges in terms of understanding cell responses, cellular uptake or the intracellular fate of soluble graphene derivatives. In the biological microenvironment graphene nanosheets might interact with exposed cellular and subcellular structures resulting in unexpected regulation of sophisticated biological signaling. More broadly, biomedical devices based on the design of these 2D planar nanostructures for interventions in the central nervous system (CNS) requires an accurate understanding of their interactions with the neuronal milieu. Here, we describe the ability of graphene oxide nanosheets to down-regulate neuronal signaling without affecting cell viability.