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a b s t r a c t 

This technical note introduces adiabatic dynamic causal modelling, a method for inferring slow changes in bio- 

physical parameters that control fluctuations of fast neuronal states. The application domain we have in mind 

is inferring slow changes in variables (e.g., extracellular ion concentrations or synaptic efficacy) that underlie 

phase transitions in brain activity (e.g., paroxysmal seizure activity). The scheme is efficient and yet retains a 

biophysical interpretation, in virtue of being based on established neural mass models that are equipped with a 

slow dynamic on the parameters (such as synaptic rate constants or effective connectivity). In brief, we use an adi- 

abatic approximation to summarise fast fluctuations in hidden neuronal states (and their expression in sensors) in 

terms of their second order statistics; namely, their complex cross spectra. This allows one to specify and compare 

models of slowly changing parameters (using Bayesian model reduction) that generate a sequence of empirical 

cross spectra of electrophysiological recordings. Crucially, we use the slow fluctuations in the spectral power of 

neuronal activity as empirical priors on changes in synaptic parameters. This introduces a circular causality, in 

which synaptic parameters underwrite fast neuronal activity that, in turn, induces activity-dependent plasticity 

in synaptic parameters. In this foundational paper, we describe the underlying model, establish its face validity 

using simulations and provide an illustrative application to a chemoconvulsant animal model of seizure activity. 
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. Introduction 

This paper introduces a class of dynamic causal model (DCM)

hat can be used for characterising slow fluctuations in biophysical

arameters that might underlie phase transitions in the brain. This

ethod is based on a separation of temporal scales ( Jirsa et al., 1994 ;

apadopoulou et al., 2017 ; Rosch et al., 2018a ; Rosch et al., 2018b ;

osch et al., 2018c ; Blenkinsop et al., 2012 ; Jirsa et al., 2014 ; Steyn-

oss and Steyn-Ross, 2010 ; Nevado-Holgado et al., 2012 ) where fast

euronal fluctuations are generated by slow fluctuations in synap-

ic parameters and other neurophysiological parameters (e.g., extra-

ellular potassium). DCM then allows one to specify different hy-

otheses about causal relations between slow biological mechanisms

 Papadopoulou et al., 2015 ) and select the most likely model that ex-

lains phase transitions in electrophysiological data. The innovation of

he DCM introduced here is that the separation of temporal scales is used

o introduce a circular causality in which synaptic parameters shape

ast neuronal activity, while frequency specific neuronal activity induces

lasticity or changes in synaptic parameters. In other words, fast, (spec-

ral) neuronal dynamics are modulated on a slow timescale by drifts
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n synaptic parameters, while the spectral characteristics of fast neu-

onal activity causes slow changes in the parameters. In this paper, we

llustrate how this circular causality and implicit separation of tempo-

al scales leads to the spontaneous onset of phase transitions in brain

ctivity and crucially, how this formulation of (patho)physiology can

e used as the basis of a relatively straightforward hierarchical DCM,

hich we refer to as an adiabatic (or A)-DCM. In brief, the mapping

rom synaptic parameters to fast – within epoch – neuronal activity

ses a conventional DCM for cross spectral density (CSD). In A-DCM,

low – between epoch – changes in spectral density are then used as

n empirical prior on synaptic parameters to model activity-dependent

lasticity. 

The motivation for developing A-DCM was to provide people with

 relatively straightforward procedure that enables them to evaluate

ypotheses about the underlying causes of phase transitions in neu-

onal activity, in terms of model evidence. For instance, the circu-

ar causality between slow parameters and spectral responses of neu-

onal oscillations could be useful for understanding the relationship be-

ween depth of anaesthesia (induced with gradual drug injections such

s Propofol to modulate the frequency contents of electrophysiological
ated Disorders, Department of Clinical Neurosciences, University of Cambridge, 

Cambridge CB2 0SZ, UK. 
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ecordings) and slow dynamics of synaptic efficacy of neuronal popu-

ations ( Purdon et al., 2013 ; Hashemi and Hutt, 2016 ). Adiabatic DCM

ould be useful for investigating how the slow evolution of ion/synaptic

echanisms engenders brain state transitions, e.g., awake to asleep

 Muheim et al., 2019 ) or pathological states, e.g. seizures ( Grenier et al.,

003 ). Exemplar questions we envisage being addressed using A-DCM

nclude: (i) what sorts of slow biological mechanisms might account

or the decline of alpha band power as a marker of progression in

lzheimer’s disease? ( Li et al., 2020 ); (ii) what are the links between

nduced paroxysmal epileptic transitions (3 to 8 Hz) and pathologi-

al evolution of potassium level or synaptic transmission mechanisms?

 Moody Jr et al., 1974 ; Du et al., 2016 ); (iii) what is the role of changes

n synaptic efficacy in inhibitory populations and the emergence of high

eta activity, as hallmarks of pathophysiology in Parkinson’s disease

 McCarthy et al., 2011 )? We do not address these long-standing ques-

ions here. Instead, through a worked example of A-DCM we show how

ne can (i) establish causal links between biological parameters and

pectral responses in generative models of neuroimaging data; (ii) eval-

ate model evidence and infer parameters from empirical data and; (iii)

ompare different hypotheses (through Bayesian model reduction and

omparison) about how the data were generated. 

With regards to extant procedures, A-DCM complements previous

pproaches to fast-slow modelling of phase transitions ( Steyn-Ross and

teyn-Ross, 2010 ; Coombes and Bressloff, 2005 ; Baier et al., 2012 ;

endling et al., 2016 ; Schiff, 2012 ). Conventionally, multiscale models

eature fast states that constitute neuronal dynamics, which are (pre-

ominantly) regulated by the dynamics of some slow states, such as

on concentrations and synaptic efficacy. The prominent application of

ultiscale models is to understand the taxonomy and phenomenology

f phase transitions in the neuroimaging data, in particular electrophys-

ological recordings, as reviewed in ( Friston, 2014 ). Some recent (se-

ective) examples of these models are: (i) a neuronal-glial interaction

odel that emulates epileptic seizures and cortical spreading depression

hrough slow dynamics of potassium and sodium ( Wei et al., 2014 ); (ii)

 neural mass model (NMM) augmented with slow dynamics for synap-

ic efficacy —e.g. as a model of synaptic plasticity ( Fung and Robin-

on, 2014 ) —to replicate burst suppression in anaesthesia ( Liley and

alsh, 2013 ; Liu and Ching, 2017 ); (iii) a slow-fast mesoscale model

f epileptic seizures that captures the slow dynamics of firing thresh-

lds —to replicate spike rate adaptation —with a NMM ( Jafarian et al.,

019b ); and (iv) a phenomenological model of epileptic seizures, known

s an Epileptor, where the aetiology of epileptic seizures is explained via

he evolution of a slow state ( Jirsa et al., 2014 ; El Houssaini et al., 2020 ).

he novelty of adiabatic DCM, as a forward model, is the ability to link

low biological mechanisms with the spectral contents of fast neuronal

ynamics. In short, A-DCM was designed to characterise (paroxysmal)

ransitions formally, by coupling modulatory slow dynamics of ion cur-

ent/synaptic efficacy and induced spectral responses in mesoscale dy-

amics. 

In terms of model estimation, due to the complexities of multiscale

odels, inferring the parameters of these models —and comparing mod-

ls given real electrophysiological recordings —typically incurs a high

omputational burden ( Hashemi et al., 2020 ; Jafarian et al., 2019b ;

afarian et al., 2019a ). In this paper, we show that A-DCM provides a

omputationally efficient method for parameter estimation —and more

mportantly calculating model evidence —that can be used to investigate

he aetiology of phase transitions from electrophysiological recordings.

n particular, model inversion in A-DCM is motivated by Synergetic the-

ry and the Adiabatic approximation ( Basar et al., 2012 ; Haken, 1977 ;

irsa and Haken, 1997 ). This formulation assumes that for each value

f slowly varying parameters, the fast-neuronal states attain nonequi-

ibrium steady-state that is expressed in terms of spectral contents. This

ssumption leads to a relativity straightforward approach to inferring

odel parameters from empirical data. Furthermore, A-DCM enables

ne to compare different models or hypotheses about underlying gener-

tors of paroxysmal transitions. 
2 
In summary, we have introduced two novel contributions in this pa-

er. First, in contrast to the existing slow-fast formulation of phase tran-

itions in the brain (e.g. Epileptor ( Jirsa et al., 2014 ) or slow-fast neural

ass model ( Jafarian et al., 2019b )), we introduced the modulation of

arameters with respect to the frequency contents of fast membrane

otentials (both in terms of forward simulations of the model and the

stimation procedure). We therefore provided a platform that could be

seful for clinical research (in particular, regarding the circular rela-

ionship between spectral responses in electrophysiological recordings

nd their associated underlying biological causes. Second, by employing

he spectral contents of the data as a prior when inverting/estimating a

euronal model, we provided an explicit model of circular causality. In

ddition, we established a procedure for data driven model construction

etween slow states’ dynamics and fast neuronal responses, which has

ot been considered previously (e.g., we employed a polynomial linear

odel to relate slow states and the evolution of the spectral contents of

he data). 

This paper comprises four sections. In the next section, we review

he theoretical tenets of A-DCM. In section three, we first provide an

llustrative example of the basic ideas in terms of a forward simulation

f the generative model. This example illustrates how changes in model

arameters can induce transitions in brain activity and accompanying

pectral responses. We then use these forward simulations to create a

ierarchical generative model ( Friston et al., 2016 ) that can be inferred

rom empirical data. The third section presents some applications of A-

CM —using Bayesian model reduction —to characterise the underlying

auses of seizures. In this section, we generated synthetic data that un-

ergoes transition into and out of seizures. Then, by performing a sec-

nd level analysis, under a hierarchical model of slow changes in DCM

arameters ( Friston et al., 2015 ), we show how one can answer some

undamental questions concerning the genesis of epileptic seizures. This

ection can be read as establishing the face validity of the procedure.

n the fourth section, we apply model inversion to an empirical electro-

hysiological recordings from an animal model of epilepsy to provide an

llustrative (worked) example of this type of analysis. We conclude with

 discussion of the limitations and potential applications of adiabatic

CM. 

. Theory 

This section provides a brief review of dynamic causal modelling.

hen, we build on this to introduce the A-DCM methodology that uses

 hierarchical model, in which slow changes in DCM parameters at the

econd level are coupled to spectral responses at the first. 

.1. Dynamic causal modelling 

Dynamical causal modelling is the estimation of biologically in-

ormed models of neuroimaging data using variational Bayesian meth-

ds ( Friston et al., 2007 ; Friston et al., 2003 ; Friston et al., 2008 ;

riston et al., 2019 ). DCM was pioneered nearly 20 years ago and since

een used to infer the biological mechanisms generating neuroimag-

ng data ( Jafarian et al., 2019c ; Friston, 2011 ; Friston et al., 2011 ;

enny et al., 2011 ; van Wijk et al., 2018 ). In DCM, a posterior probability

ensity over model parameters, as well as the evidence for a model (for

ny given empirical data), are inferred through optimisation of an objec-

ive function called the variational free energy. This objective is known

s an evidence lower bound (ELBO) in machine learning and provides a

omputationally efficient approximation to the (log) model evidence or

arginal likelihood. This optimisation is performed under the Laplace

pproximation (i.e., probability densities are approximated using Gaus-

ian distributions) ( Friston et al., 2007 ; Friston et al., 2008 ; Beal, 2003 ;

eidman et al., 2019a ) using a gradient ascent on variational free en-

rgy. This is known as Variational Laplace. In DCM, the model evidence

ssociated with different hypotheses (i.e., models) of the same data are

ompared using Bayesian model selection and comparison to identify
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Table 1 

Parameters of the neuronal model (see also Fig. 2 ). 

Description Parameterisation Prior 

T Postsynaptic rate constant exp ( 𝜃𝜅 ) ⋅ 𝑇 𝑖 𝑇 = [ 256 , 128 , 16 , 32 ] 𝑝 ( 𝜃𝜅 ) = 𝑁( 0 , 1∕16 ) 
g Intrinsic connectivity between populations i and k in each region exp ( 𝜃𝑎 ) ⋅ 𝑔 𝑝 ( 𝜃𝑎 ) = 𝑁( 0 , 1∕16 ) 
G Self-inhibitory connection exp ( 𝜃𝑎 ) ⋅ 𝐺 𝑝 ( 𝜃𝑎 ) = 𝑁( 0 , 1∕16 ) 

Table 2 

Glossary of variables and expressions. 

Variable Description 

𝑢 Exogenous input 

𝑥 The i -th (neuronal) state in region j ; e.g., mean depolarisation of a neuronal population 

𝜎( 𝑥 ) The neuronal firing rate – a sigmoid squashing function of depolarisation 

𝐿 Lead field vector mapping from (neuronal) states to measured (electrophysiological) responses 

𝑔 𝑣 ( 𝜔 ) , 𝑔 𝑜 ( 𝜔 ) , 𝑔 𝑦 ( 𝜔 ) Spectral density of (neuronal) state fluctuations, observation error and ensuing measurement, respectively 

𝜕 𝑥 𝑓 System Jacobian or derivative of system flow with respect to (neuronal) states 

𝑘 ( 𝑡 ) = 𝐹𝑇 [ 𝐾( 𝜔 ) ] First order kernel mapping from inputs to responses; c.f., an impulse response function of time. This is the Fourier transform of the transfer 

function 

𝐾( 𝜔 ) = 𝐹𝑇 [ 𝑘 ( 𝑡 ) ] Transfer function of frequency, modulating the power of endogenous neuronal fluctuations to produce a (cross spectral density) response. 

This is the Fourier transform of the kernel 
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he best explanation for the data at hand ( Kass and Raftery, 1995 ).

 recently developed Bayesian model reduction technique, which we

ill leverage here, opens a new avenue for rapidly comparing the evi-

ence for models specified in terms of their priors ( Friston et al., 2018 ;

riston and Penny, 2011 ; Friston et al., 2016 ; Zeidman et al., 2019b ). A

reedy (i.e., depth-first) search is performed in the BMR method that it-

ratively switches off mixtures of parameters ( Friston et al., 2018 ). Each

ixture is removed when switching it off causes no reduction in free en-

rgy (i.e., when the parameters were only contributing to complexity,

ithout increasing accuracy). This search is highly efficient and takes

econds on a standard desktop computer. For more details, please see

 Friston et al., 2018 ; Jafarian et al., 2019c ). 

.2. Adiabatic dynamic causal model (A-DCM) 

.2.1. Theoretical foundation 

The starting point for A-DCM is a separation of temporal scales

nto fast (neuronal) and slow fluctuations ( Basar et al., 2012 ). Our

ain assumption here is that the brain can be treated as an excitable

edium, where neuronal dynamics operate around a sequence of fixed

oints, where oscillatory dynamics result from the (neuronal) filtering

f endogenous random fluctuations ( Moran et al., 2007 ; Moran et al.,

013 ; Friston et al., 2012 ). The fixed points then change slowly to

enerate changes in cross spectral density over time (please also see

ppendix C for further discussion) ( Table 1 and 2 ). 

The slow and fast scale separation, which is known as an adiabatic

pproximation ( Haken, 1977 ), leads naturally to a mean field approx-

mation when building generative models for data analysis. Under a

ean field approximation, the posterior over unknown variables is ap-

roximated with the product of (marginal) posteriors ( Friston et al.,

007 ). In this instance, the adiabatic approximation enables us to es-

imate slowly changing synaptic (i.e. connectivity) parameters and hy-

erparameters, under the assumption that they are conditionally inde-

endent. The mean field approximation requires us to write down the

quations of motion for the parameters or connection strengths. Effec-

ively, this entails specifying a model of synaptic plasticity. We therefore

onsider a paroxysmal (e.g., epileptogenic) perturbation or phase tran-

ition that is mediated by neuronal plasticity (e.g., spike rate adaptation

r associative plasticity) to reset the fast-neuronal dynamics – and their

xpression in spectral responses (please also see Appendix C for further

iscussion). 

In A-DCM, neuronal dynamics are generated in terms of their second

rder (statistical) moments, via complex cross spectra ( Friston et al.,
3 
012 ). These then generate observed cross spectra in the sensor domain

via a standard electromagnetic forward model). In detail, let us write

he temporal dynamics of neuronal states, 𝑥 , driven by random fluctua-

ions, 𝑢 , for a given set of parameters 𝜃 as follows: 

̇  = 𝑓 ( 𝑥, 𝜃) + 𝑢 (1)

In Eq. 1 , the cross spectral content of the random fluctuation,

 𝑢 ( 𝜔, 𝜃) = 𝐹 𝑇 ( 𝐸[ 𝑢 ( 𝑡 ) , 𝑢 ( 𝑡 − 𝜏) ] ) , is modelled as (structured) pink noise

 Friston et al., 2012 ; Moran et al., 2007 ; Moran et al., 2013 ). The as-

umption underlying DCM for CSD is that random fluctuations induce

scillations around some fixed point ( Da Silva et al., 1974 ; Friston et al.,

012 ). In other words, using DCM for CSD, we treat electrophysiolog-

cal recording, 𝑦 , as a neuronally filtered version of endogenous noise

 Da Silva et al., 1974 ). Under a fixed point assumption, the neuronal

ynamics can be well approximated by the first order linearised neu-

onal model �̇� = ( ∇ 𝑥 ∗ 𝑓 ) 𝑥 + 𝑢 (where ∇ 𝑥 ∗ denotes the Jacobian of neu-

onal states at 𝑥 ∗ ) ( David et al., 2006 ). The linearised equation of neu-

onal states is used to obtain a semi analytic expression of the trans-

er function (i.e., first order Volterra kernel) with an impulse response

 ( 𝜏, 𝜃) = exp ( 𝜏. ∇ 𝑥 𝑓 ( 𝑥, 𝜃) ) . The spectral response of the transfer function

an in turn be expressed as follows: 

 ( 𝜔, 𝜃) = 𝐹 𝑇 
(
exp 𝜏. ∇ 𝑥 𝑓 ( 𝑥, 𝜃) 

)
(2)

The neuronal source response, 𝑔 𝑥 ( 𝜔 ) , of the noise driven model is

iven by: 

 𝑥 ( 𝜔 ) = 𝐾 ( 𝜔, 𝜃) . 𝑔 𝑢 ( 𝜔, 𝜃) .𝐾 ( 𝜔, 𝜃) 𝑇 + 𝑔 𝑜 ( 𝜔, 𝜃) (3)

In Eq. 3 , 𝑔 𝑜 ( 𝜔, 𝜃) represents random fluctuations due to observation

oise (associated with individual channels and common to all channels)

 Moran et al., 2007 ). The spectral response in sensor space is calculated

hrough the forward electromagnetic model, denoted by 𝐿. 𝑀( 𝜔 ) , as

ollows: 

 𝑦 ( 𝜔 ) = 𝐿.𝑀 ( 𝜔 ) . 𝑔 𝑥 ( 𝜔 ) . 𝑀 

𝑇 ( 𝜔 ) . 𝐿 

𝑇 + ∈ (4)

In Eq. 4 , 𝑔 𝑦 ( 𝜔 ) are the cross spectral data and ∈ is a random effect

ue to computing the cross spectra from finite timeseries, which can

e inferred using the variational Bayes approach in DCM (please see

ppendix A for explanation of this final term in Eq. 4 ). 

In A-DCM, slow dynamics of parameters, 𝜃𝑡 , have the following gen-

ral form, which models activity-dependent plasticity at time 𝑡 , via a

ependency on neuronal activity: 

𝑡 = 𝜁𝜌( 𝑔 ( 𝜔, 𝑡 ) ) + 𝜀 𝑡 (5) 
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Fig. 1. This figure illustrates forward simulation and estimation procedures in adiabatic DCM. a) Forward simulation procedure for a neuronal model that is equipped 

with slow states. Here, the value of parameters 𝜽 at each point in time induces neuronal responses 𝒙 . The ensuing induced spectral neuronal responses modulate the 

value of parameters and so on. In effect, a form of circular casualty inherently emerges in A-DCM that accounts for the mechanistic coupling between slow variations of 

physiological parameters and fast neuronal responses. The four neuronal populations that constitute the canonical microcircuit are 1 = spiny stellate cells, 2 = superficial 

pyramidal cells, 3 = inhibitory interneurons and 4 = deep pyramidal cells (see Fig. 2 for details) and 𝜽1 , .., 𝜽4 (e.g., self-inhibition) represent parameters of each neuronal 

populations. Hierarchical inversion in A-DCM rests upon a separation of temporal scales. In this approach, electrophysiological data is divided into segments. Then, 

hierarchical Bayesian model inversion —using DCM for CSD and PEB —is used to infer time-dependent parameters that are constrained at the second level by the 

spectral properties of the data. The ensuing estimated parameters are then modelled using a linear in parameters ( 𝜷𝒊 , 𝒊 = 1 , .., 𝑷 ) polynomial (of order 𝑷 ) GLM, with 

a design matrix that summarises the spectral features of the data to ensures a coupling between time-dependent parameters and spectral responses in the data. Note 

that one could use a similar approach to characterise the relation between the slow dynamics of parameters and spectral response of neuronal populations. However, 

the main aim of A-DCM is to provide a model between physiological parameters and the measurable data at hand. 
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The term 𝑔( 𝜔, 𝑡 ) in Eq. 5 denotes the spectral activity of neuronal

ynamics at epoch t . Here, 𝜁 is an operator (parametrised by unknown

arameters 𝜌) that generates the parameter at time t from the spectral

ctivity of neuronal dynamics, and 𝜀 𝑡 is additive random effect. One

xample of the operator 𝑆 could be the integral of power spectral den-

ity (PSD) (Using Parseval’s theorem, the variance (average power) of a

rocess can be calculated by integrating the power spectrum over all fre-

uencies: 𝑣𝑎𝑟 ( 𝑥 ) = ∫ 𝑃 𝑆𝐷( 𝑥 ) 𝑑𝑓 ( Von Storch and Zwiers, 2001 )), which

ngenders a simple form of synaptic plasticity (please see Fig. 1 a). An-

ther example of operator S can be concatenated power spectral density

f electrophysiological data, e.g., local field potential (LFP) over differ-

nt epochs. Such definitions for the 𝑆 operator can be useful when one

ants to test for a causal relation between synaptic parameters and fre-

uency specific neuronal activity (i.e., investigating circular causality).

n what follows, we will use a general linear model (GLM) based upon

egressors (in a design matrix) that encode the expression of particular

requencies. This means that the parameters 𝜌 correspond to the param-

ters of a GLM (e.g., regression coefficients). Note that the adiabatic

pproximation allows us to express the slow dynamics as a mapping

rom the time-dependent spectral density to the parameters (please see

ig. 1 b). 

In A-DCM, the neural mass model is only used to evaluate the spectral

esponse to some endogenous neuronal fluctuations 𝑢 ( 𝑡 ) that are them-

elves, parameterised. This enables us to specify a generative model of

low fluctuations in observable (complex cross) spectral density, purely

n terms of parametric dynamics, while – at the same time – absorbing

 chosen neural mass model into the resulting adiabatic DCM. 
4 
.2.2. Practical implementation 

For people familiar with DCM, we employ a standard DCM for cross

pectral density ( Litvak et al., 2011 ; Friston et al., 2012 ) and turn it into

 hierarchical state space model by adding dynamics to the parameters.

he inversion of this model allows us to estimate the connectivity that

est explains empirical cross spectra and the trajectories or dynamical

rchitecture controlling the expression of different synaptic parameters.

Practically, we first divide data into epochs (that may overlap)

please see Fig. 1 b). We then use the separation of temporal scales to

odel slow changes in the parameters from epoch to epoch within a hi-

rarchical or parametric empirical Bayes model ( Friston et al., 2015 ;

riston et al., 2016 ). In detail, the posteriors over parameters from

ach epoch are passed to the second level PEB analysis, and slow drifts

n the parameters are captured using a general linear model (GLM)

see Papadopoulou et al., 2015 ). Crucially, the explanatory variables

n the GLM comprise the spectral density of neuronal activity in each

poch. This underwrites the circular causality between frequency spe-

ific changes in fast, parameter-dependent neuronal responses and the

low, activity-dependent neuronal plasticity. In the examples below, we

se the empirical spectra as explanatory variables in the GLM – af-

er some suitable dimension reduction and transformation ( Chen et al.,

008 ; Gavish and Donoho, 2014 ). This means the empirical spectra are

sed twice. First, the cross spectrum of each epoch is used as the data

eature to fit the parameters of an epoch-specific DCM. Second, between-

poch changes in spectral activity are used to provide empirical priors

ver changes in these parameters. This dual use of the spectral data is li-

ensed by the separation of temporal scales upon which this DCM rests.
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n other words, A-DCM leverages information in the spectral content of

ach epoch and in spectral changes over epochs. 

The reason that this (adiabatic) DCM is efficient is that using a gen-

rative model of cross spectra converts a neural state-space model into

n instantaneous mapping between the parameters of the model and

he expected second order responses over time; namely, the complex

ross spectra. The only assumption behind this adiabatic approximation

s that the spectral summary of dynamics is sufficient to inform slow

hanges in parameters. This is a key part of the adiabatic DCM described

ere: conditioning the parameters of neuronal density dynamics (here,

pectral density) means that we can model activity-dependent changes

n connectivity and other slowly varying factors that, in turn, shape fast

euronal responses. This means that one can specify an adiabatic DCM to

odel slow dynamics such as spike rate adaptation, short-term plasticity

r, indeed, the target of this work; trajectories in parameter space that

ngender paroxysmal transitions in neuronal dynamics, e.g., epilepsy.

he basic DCM for CSD using this work has been described in many pre-

ious applications e.g., ( Papadopoulou et al., 2017 ; Rosch et al., 2018a ;

osch et al., 2018b ). The key thing that we bring to the table is equip-

ing the model with a second level that is constrained by empirical data

eatures at a slower timescale. In addition, we establish polynomial GLM

o model the relationship between slow parameters and spectral con-

ents in data. 

To establish the face validity of this kind of model, we will refer

o specific empirical data in which seizures were induced chemically.

hese data and the ensuing seizure activity and now summarised briefly.

.3. Chemoconvulsant animal model of seizures 

Animal experiments were conducted in accordance with the United

ingdom Animal (Scientific Procedures) Act 1986, and approved by the

ome Office (license PPL70-13691). Sprague-Dawely rats (8–12 weeks

ld, 280–330 g; Charles River, UK) were used in this study. All ani-

al experiments were conducted in accordance with the United King-

om Animal (Scientific Procedures) Act 1986, and approved by the local

thics committee (University College London). Animals were housed on

2 h/12 h dark/light cycle, and food and water were given ad libitum.

nimals were group housed and allowed to acclimatise to the new en-

ironment for at least 1 week before surgery, and were housed individ-

ally after surgery. Rats were anaesthetised using isoflurane (2%) and

ead-fixed in a stereotaxic frame (Kopf, USA). A small hole was drilled

hrough the skull above the right primary visual cortex (coordinates: 3

m lateral and 7 mm posterior of bregma and a cannula inserted (Plas-

ics1, USA). During the same surgery, an ECoG transmitter [A3028E-

A, Open Source Instruments] was implanted subcutaneously with a

ecording electrode wire positioned in the visual cortex. A reference

lectrode was placed in the contralateral frontoparietal cortex. Animals

ere single housed in Faraday cages for telemetric ECoG recordings.

-10 days post-surgery, rats were briefly anaesthetised and 300-400nl

f 10mM Picrotoxin administered to layer 5 visual cortex, via the pre-

mplanted cannula. Immediately after injection rats were removed from

he stereotaxic frame and replaced in telemetry. Within a few minutes

ost-injection small amplitude spikes appeared in the ECoG traces, these

volved over the next 5-10 minutes into large amplitude regular (~1Hz)

pikes or poly-spikes. A cyclical pattern of seizures (~53s in duration)

nd inter-ictal activity was observed for about 2-3 hours before fading

way and a resumption of normal brain activity. 

. Validation analyses using simulated data 

This paper demonstrates the basic phenomenology that A-DCM is

apable of explaining; namely, phase transitions in electrophysiological

ata. In this section, we will use synthetic data. In subsequent sections,

e apply the same methodology to empirical data taken from the mouse

odel of seizures above, to illustrate the sort of analyses one can per-

orm. 
5 
To illustrate A-DCM, we use the canonical microcircuit (CMC)

 Bastos et al., 2012 ; Friston et al., 2019 ) as a model of electrical ac-

ivity of a typical cortical column (see Fig. 2 for details), This model

as been found to be useful for a range of applications in computa-

ional neuroscience, including: predictive coding ( Bastos et al., 2012 ),

odelling evoked brain responses ( Auksztulewicz and Friston, 2015 ;

afarian et al., 2020 ; Friston et al., 2019 ) and cross spectral responses

 Rosch et al., 2018b ; Rosch et al., 2018c ) to name a few. The CMC can

eplicate fast gamma activity of the superficial layers as well as the slow

beta) activity in deep layers in the cortex ( Bastos et al., 2012 ). The CMC

omprises four neuronal populations, namely superficial pyramidal cells

layer I of the cortex), excitatory populations (spiny cells in layer IV of

he cortex), deep pyramidal cells (layer V of the cortex) and interneu-

on inhibitory cells. Each population in the CMC receives a firing rate

rom inter regional and distal neuronal populations, weighted by intrin-

ic and extrinsic effective connectively, respectively. Each population

onverts summed input firing rates to a postsynaptic synaptic response

through convolution of the firing rate and a synaptic impulse response

odel). The ensuing postsynaptic response generated by each neuronal

opulation is then transformed to mean firing rates (through sigmoid

ransformation), which is then communicated to other populations via

ntrinsic and extrinsic efferents. Electrophysiological recordings are gen-

rated by the CMC as (mainly) the activity of superficial pyramidal cells

lus weighted sum (inferred from data) of the activity of excitatory and

eep pyramidal populations. 

.1. Face validity: simulation of beta burst synchronization 

.1.1. Part A: forward simulation of beta bursts 

In this section, we validate the basic idea of A-DCM – that a recipro-

al coupling between fast neuronal activity and slow drifts in synaptic

arameters (e.g., extracellular concentrations or synaptic efficacy) in-

uces phase transitions. This validation rests upon integrating (or solv-

ng) coupled differential equations at fast and slow timescales to illus-

rate that when parameters pass from one regime of parameter space to

nother, there is a qualitative change in the spectral activity at the fast

imescale ( Papadopoulou et al., 2015 ). 

In this simulation, we illustrate the effect of modulating the self-

nhibition of deep and inhibitory cells using the integral of the power

pectral density (variance of the signal in the time domain) of their

ostsynaptic potentials. This can be regarded as a simple model

f activity-dependent synaptic plasticity ( Fung and Robinson, 2014 ;

ritschy, 2008 ). This model was motivated by the fact that there is a

elationship between the energy content of neuronal activity and ion

ynamics. For example, the activity level of neuronal activity declines

fter seizures (known as post ictal depression), which is related to the

athological evolution of ion currents ( Panayiotopoulos, 2010 ). Another

otivation includes the relationship between energy metabolism due to

euronal activity (caused by ion dynamics) and their level of demand

or energy as observed in haemodynamic responses ( Rosa et al., 2011 ;

armichael et al., 2017 ). 

The ensuing simulated data and evolution of parameters are shown

n Fig. 3 . In this simulation, the dynamics of parameters induce a

igh band synchronised beta burst. The dynamics of phase transition

n this model are akin to a bifurcation or phase-transition. This is be-

ause crossing a phase boundary or ‘separatrix’ in parameter space in-

uces the transitions in mesoscopic activity. Although there is a sud-

en change in the spectral activity induced by this boundary cross-

ng, the drift of the parameters per se is quite smooth and slow (in

omparison with the fast neuronal states) ( Papadopoulou et al., 2017 ;

osch et al., 2018a ; Rosch et al., 2018c ). The synchronised beta burst is

 hallmark of movement disorders ( McCarthy et al., 2011 ; Spitzer and

aegens, 2017 ; Sherman et al., 2016 ), which may also be induced by

rugs/interventions ( Rodriguez et al., 2004 ; Shin et al., 2017 ) or during

emory retrieval ( Jansen et al., 2011 ). Note that the simulated seizure

ctivity in Fig. 3 is entirely self-organised. In other words, the drifts
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Fig. 2. Canonical microcircuit (CMC). a) A 

patch of cortex divided into cortical columns. 

Electrical activity of each cortical column can 

be captured by electrophysiological recording, 

e.g., ECoG. Each cortical column is divided into 

several layers (here 3), each of which is mod- 

elled by one population of neurons. Superfi- 

cial and deep pyramidal cells are in the su- 

perficial and deep layers, respectively. Excita- 

tory interneurons (spiny stellate cells) are lo- 

cated in layer four – labelled 1 in the figure. 

Inhibitory interneurons are distributed across 

all layers and are modelled using one popula- 

tion that interacts with all other populations. b) 

The mean electrical activity of each neuronal 

population is derived using mean field theory 

using two conversion operators. The postsynap- 

tic potentials, 𝒙 𝒊 are transformed through a sig- 

moid nonlinearity, 𝒔 ( . ) , to generate a firing rate 

(weighted by connectivity constant g). The en- 

suing firing rate is then converted to postsynap- 

tic potentials, 𝒙 𝒐 through the linear response of 

synapses (parametrised by rate constant T). In 

addition, each population is equipped with a 

self-inhibition connection G (illustrated as short curved red lines) which assures neuronal homeostasis, i.e., in the absence of neuronal input, the activity of neurons 

rest at an equilibrium. Please see Appendix D for detailed formulation of this model. 
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n self-inhibition were driven by activity-dependent plasticity; here, the

verall power in neuronal activity of the respective neuronal popula-

ions. 

The example in Fig. 3 was based upon solving differential equations

or fast and slow dynamics in time. To examine the equivalent charac-

erisation in frequency space, we evaluated the transfer function of the

MC model, given the trajectory of parameters in Fig. 4 . In detail, we

ook the trajectory of parameters from Fig. 3 -c, and calculated the in-

uced spectral changes through simulation of the transfer function for

ach sample point in the data. This first-order approximation to the non-

inear solution in Fig. 4 confirms that phase transitions simulated above

an be attributed to the evolution of parameters. Furthermore, it licenses

he use of spectral data features for inversion of a DCM for cross spectral

ensity (CSD) data. We pursue model inversion in the next section. 

.1.2. Part B: inferring adiabatic dynamics 

The previous section established the face validity of the generative

odel in terms of being able to generate plausible phase transitions. In

his section, we turn to the face validation of inference or model inver-

ion. In brief, we now try to recover the slow changes in synaptic pa-

ameters given the (synthetic) electrophysiological data in the previous

ection. To infer dynamics of the parameters, first we divide the simu-

ated data above into overlapped epochs (sliding windows that span all

amples in the data with the duration two seconds). Then, we implement

-DCM by using the standard (canonical microcircuit) DCM for CSD to

xplain the cross spectral density of each epoch, furnishing a set of pa-

ameters for each window ( Moran et al., 2007 ; Bastos et al., 2015 ). The

nsuing predictions of spectral responses and estimated self-inhibition

f deep pyramidal cell are shown in Fig. 5 . 

Next, to leverage the circular causality between slow and fast

imescales, we inverted a general linear model (GLM) of the parame-

ers from each epoch. The GLM we use for this example is a polynomial

xpansion of the spectral power: 

= 𝛽1 
(
𝑔 ( 𝑦 ) 1 

)
+ 𝛽2 

(
𝑔 ( 𝑦 ) 2 

)
+ ⋯ + 𝛽𝑘 

(
𝑔 ( 𝑦 ) 𝑝 

)
+ 𝜀 (6) 

In Eq. 6 , 𝛽𝑖 s are unknown coefficients in the GLM, 𝑔 ( 𝑦 ) 𝑖 is the re-

tricted power spectral density (to some frequency bins) of the observa-

ion data, where 𝑖 is an exponent that can range from one to an unknown

alue 𝑝 . The frequency bins of interest, here, are dominant spectral peaks

which can be identified automatically via a singular value decomposi-

ion) before, during and after phase transitions in the observed signal.
6 
o define an optimal value for 𝑝 , we gradually increased it from one, and

ompared the associated free energy (i.e., log evidence). At some point

uring the increase of the polynomial order, the free energy (which is

he accuracy minus the complexity of the model) starts to decrease due

o overfitting ( Bishop, 2006 ). The implicit Bayesian model comparison

nables one to find the polynomial order 𝑝 that has the greatest evidence,

.e., the best balance between accuracy and complexity. The results of

his model comparison are shown in Fig. 6 . 

Note that by construction, the spectral data features are both caused

y the parameters (at the first or fast level) and also cause the parameters

at the slow or second level). The advantage of this unusual but straight-

orward construction is that one can test the hypothesis that particular

requencies are responsible for increasing or decreasing particular pa-

ameters on a slow timescale. It is this influence of frequency-specific

odulation on synaptic parameters that stands in for the reciprocal cou-

ling between fast and slow timescales evinced in the first section. 

.2. Face validity: model comparison 

In this section, we present a face validation of the Bayesian model

omparison and reduction procedures in A-DCM that can be used to

est different hypotheses about how slow (synaptic) changes give rise

o spontaneous paroxysmal transitions. To generate synthetic data, we

pecified trajectories of the self-inhibition of inhibitory and deep pyra-

idal cells, to produce a characteristic change in spectral density in elec-

rophysiological data (that stands in for the onset of seizure activity).

he timeseries solution of the stochastic difference/differential equa-

ions generating parameters and simulated data are shown in Fig. 7 .

n this simulation, pathological transition is due to changes in self-

nhibition of the inhibitory and deep pyramidal populations. Interest-

ngly, we observe hysteresis phenomena in the behaviour of the model.

his is supported by the fact that when self-inhibition of deep pyrami-

al and inhibitory cells are increased/decreased, respectively, the model

ndergoes high frequency activity, which is known to be one of the hall-

arks of onsets of spontaneous seizures ( Traub et al., 2001 ; Grasse et al.,

013 ). Importantly, when the parameters change in the other direction,

he model generates epileptic spikes. 

Next, to infer the parameters over 21 predefined epochs, we used

CM for CSD. The reader should note that due to the nonlinear nature

f the model, there are many combinations of parameters (e.g. synaptic
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Fig. 3. Forward simulation of the CMC model with 

slow dynamics. a) LFP response of the model where 

self-inhibition of spiny and inhibitory populations 

showed slow changes that depend on postsynaptic po- 

tentials generated by spiny and inhibitory cells, respec- 

tively. Clearly, there are two distinct dynamics can be 

identified in the time domain - spiky normal activity 

and synchronised activity in the middle. b) Time fre- 

quency representation shows the frequency of synchro- 

nised activity in the beta range. c) Slow fluctuation of 

parameters before and after phase transitions- in this 

case there is a clear separation between the value of 

the parameter that produced the two types of activities 

in LFP. In part c, 𝑮 2 is the self-inhibition of excitatory 

population. 

Fig. 4. Forward simulation of the transfer 

function CMC with slow dynamics. The figure 

on the left-hand side shows the time frequency 

response of the transfer function given the tra- 

jectory of slow parameters in Fig. 2 panel c. The 

right-hand side of the figure shows the power 

spectral density of the simulated transfer func- 

tion for each value of slowly varying param- 

eters in Fig. 3 panel c (mapped into the time 

frequency domain on the left figure). 
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ime constants, connectivity parameters) that could provide an equally

ood fit to the data ( Jansen and Rit, 1995 ) and some may have even bet-

er free energy scores than the model generating the data ( Litvak et al.,

019 ; Friston et al., 2013 ). This may sound counterintuitive; however,

ecall that the free energy is the trade-off between the accuracy and com-

lexity of the model, where complexity is the difference (KL-divergence)

etween the priors and posteriors. Slight changes from the prior expec-

ations in a large number of parameters may offer a less complex expla-

ation for the data than having just a few parameters with a large de-

iation from their priors. Therefore, a higher evidence may be afforded

o a model that is simpler than the one used to generate the data. 

In this example, we first define a prior over all model parameters and

hen test various models in which one parameter is allowed to fluctuate

round its prior expectation over epochs. To identify the prior expecta-

ion, we estimated all model parameters from a normal segment of the
7 
ata in Fig. 7 (alternatively, one could use several normal segments and

se Bayesian model averaging to define the requisite expectation). 

After identifying the prior expectation for the parameters, we ran

CM for CSD for each epoch to quantify changes in self-inhibition asso-

iated with each population. In total there are four self-inhibition con-

ections. In other words, the hypothesis that we evaluate here is that

athological disinhibition in neuronal populations induces paroxysmal

ransitions and our key question of interest is: which populations con-

ribute to the genesis of seizures? Answering such a question could have

 substantive impact on our understanding of epileptic seizures (as op-

osed to non-epileptic seizures), which in turn may assist in designing

n effective treatment strategy to supress or abate pathology. 

Practically, we took the above parameter estimates (posterior mean

nd covariance) to a second level parametric empirical Bayes (PEB) anal-

sis ( Friston et al., 2016 ), with a between-epoch design matrix contain-
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Fig. 5. Predicted time-frequency response of the estimated CMC over epochs. 

DCM for CSD is used to estimate parameters for each epoch. The ensuing es- 

timates are then used to estimate the transfer functions of the CMC model, to 

generate predicted induced frequency responses. The lower panel shows the 

variation of parameter estimates in example 1. Note the quantitative difference 

between parameters during and after seizures. This figure shows the log scale 

parameter pertaining to intrinsic self-inhibition connection G4 of deep pyrami- 

dal cells. 
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ng empirical priors based on the (binarized) spectral envelope of the

ata. These empirical priors tell us when particular synaptic parameters

hange; enabling model comparison to identify which particular com-

inations of parameters best explain the data. As it shown in Fig. 8 b,
ig. 6. Modelling the evolution of parameter ( Δ𝑮 2 ) with respect to empirical freque

o the smallest model evidence) of the second level GLM. We estimated the model e

inear-in-coefficients polynomial of the empirical frequency content of the ensuing ne

he polynomial is 4. b) Observed and predicted model of the parameter dynamic ( Δ𝑮
n the parameters are expressed in terms of log scaling. In other words, a value of 0 co

qual to the proportional change (i.e., -.1 is roughly a decrease of 10%). The free ene

onverting these log evidence approximations to the posterior probability of each m

elect the model order of 4, which has posterior probability approaching 100%. 

8 
ayesian model reduction suggests that changes in self-inhibition in in-

ibitory and deep pyramidal cells are the best explanation for the data.

his is consistent with how the data were actually generated. Bayesian

odel reduction is used to eliminate redundant parameters by testing

he evidence for models with and without a particular parameter and

omputing the Bayesian model average. 

We then repeated the PEB analysis by replacing the binarized spec-

ral envelope with frequency specific regressors, to characterise the rela-

ionship between the self-inhibition and spectral responses. This kind of

nalysis could disambiguate the contribution of distinct neuronal popu-

ations to paroxysmal brain activity (which can be targeted by different

ntervention mechanisms). We selected three frequencies as the regres-

ors for the PEB design matrix (i.e., GLM). Specifically, we identified the

wo frequencies that predominated during the seizure period and normal

ctivity. Then used PEB to characterise the contribution of parametric

hanges to spectral responses in the data (or vice versa). The result of

his analysis is shown in 

Fig. 9 , and suggests that self-inhibition of the inhibitory population

s likely to be responsible for the generation of 3 Hz oscillation (or vice

ersa) and both inhibitory and deep pyramidal self-connections are im-

licated in the generation of 8 Hz activity. Fig. 9 shows the posterior

stimates of the second level (GLM) parameters (on top) and following

ayesian model reduction (below). 

The inferred parameters of the GLM (coupling frequency-specific ac-

ivity to self-inhibition parameters) are plotted in Fig. 8 . As can been

een from these posterior estimates, the upward/downward changes in

elf-inhibition of the inhibitory and deep pyramidal cells are well cap-

ured. This frequency-specific analysis may provide valuable informa-

ion that it would not otherwise be possible to extract from electrophys-

ological data. More importantly, capturing trends in parameter dynam-

cs may be important for designing effective treatments of epilepsy as

ifferent intervention mechanisms may have an opposite effect on differ-

nt ion currents ( Blenkinsop et al., 2012 ; Nevado-Holgado et al., 2012 ).

n the final section, we rehearse A-DCM, using empirical data to provide

n illustrative example. 

. Worked example: animal model of epilepsy 

As the final example in this paper, we apply A-DCM to a Picrotoxin

nimal model of seizures ( Kätzel et al., 2014 ). In this animal model, the

ause of paroxysmal activity can be related to pathological disruption of
ncy content in the data. a) This panel shows relative free energy (with respect 

vidence associated with models of changes in synaptic parameters based on a 

uronal responses – as captured by the data ( Eq. 6 ). Here the optimal power of 

 2 ) with polynomial order 4 in Eq. 6 . In this and all subsequent figures, changes 

rresponds to a scaling by exp(0) = 1. For small changes, the log scaling is roughly 

rgy of a model with order 4 was 30674 and for order 5 was 30557 < 30674. By 

odel (which by Bayes rule under equal priors is a softmax function), we would 
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Fig. 7. Simulation of induced seizures. a) Slow dynamics of parameters of the CMC model. b) Simulated ECoG and its time frequency representations, which shows 

some features of spontaneous seizures, i.e., before the seizures we observe fast activity that is followed by pathological spikes around 5-8 Hz. 

Fig. 8. Parametric empirical Bayes analysis of simulated data. a) Estimated slow dynamics of parameters in the CMC mode over 21 segments of data with average 

of 2 second duration. b) PEB analysis with a design matrix based on the spectral envelope of the data. The original PEB posterior estimates show on top (full model) 

and the estimates following Bayesian model reduction are shown below (reduced). The reduced model reveals the underlying causes of seizures in Fig. 7 and clearly 

capture is the trends in parameters. 𝑮 1 , 𝑮 2 , 𝑮 3 and 𝑮 4 are self-inhibition of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells, respectively. As 

in previous figures, the effect sizes relate to unitless log scaling parameters. 
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ynaptic connections at the focus of drug injection, which is then spread

o other regions ( Kätzel et al., 2014 ; Wood, 2014 ). 

The animal was implanted with a wireless ECoG device on its brain

nd a cannula was inserted into its primary visual cortex, in the right

emisphere. We then injected a chemo-convulsant drug (Picrotoxin,

00-400nl of 10mM) via the pre-implanted cannula. A few minutes af-

er the injection, large amplitude spikes emerged (due to the hyper-

ynchronised response of the neuronal population at the site of in-

ervention), followed by occurrence of seizures ~20-30 minutes af-

er injection. Behavioural manifestation of seizures includes freezing,

ollowed by head bobbing (20-30s), hunching, limb-kicking and oc-

asionally rearing, falling over and wet dog shakes. Average dura-
9 
ion of the seizures period in this animal model is around ~ 53s,

ith an inter seizure interval of approximately ~200 s. In this ani-

al model, the activity of the brain recovers to the baseline activity

-3 hours after the injection, which implies ~15-20 seizures over 2

rs. A sample of ECoG data and its time frequency response are shown

n Fig. 10 . 

At the initial phase of drug injection, seizures commenced focally

nd only the injection site was affected by the drug. Subsequently other

rain regions were recruited by the seizures. We elected to study the

nderlying causes of the seizures in the initial phase of the pathology

nd investigate its underlying mechanisms to illustrate an application

f A-DCM. See also Appendix B . 
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Fig. 9. Parametric empirical Bayes analysis based on the predominant frequency content of the data. a) changes in parameters (black) and predicted changes of G3 

and G4 (red) using PEB with three frequency covariates in the GLM design matrix. b) second level GLM parameters (above) and following Bayesian model reduction 

(below). The BMR suggests that slow waves (3 Hz) are associated with inhibitory populations, whereas higher frequency pathological activity (8 Hz) may be induced 

by both deep pyramidal and inhibitory populations. 𝑮 1 , 𝑮 2 , 𝑮 3 and 𝑮 4 are self-inhibition of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells, 

respectively. 

Fig. 10. Real ECoG data from an animal model with normal to large spikes and 

seizures. Lower panel shows a scaled time-frequency plot of the ECoG data. 
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seizures. 
We first fitted the CMC model to the normal activity to establish

he prior expectation for model parameters. We then epoched the data

ach of which has 2 seconds duration and estimated key model parame-

ers. We fixed some of the parameters (e.g., noise hyperparameters and

ensor gain, which are not likely to vary in this animal model during
10 
he experiment) and only allow the rate constant and self-inhibition of

euronal populations to change during and after seizures. After model

nversion, we ran a PEB analysis with a binarized spectral envelope as

 regressor (column vector with zero and one entries, where zero and

ne denotes normal and seizure epochs, respectively). The results are

hown in Fig 11 and suggest that disinhibition in the inhibitory and

eep pyramidal cells populations best explain the data. 

Our results are in agreement with the clinical understanding of

eizures in this animal model ( Wood, 2014 ; Berglind et al., 2014 ). In

etail, these seizures are thought to be due to disruption of interaction

etween inhibitory populations and other populations ( Berglind et al.,

014 ; Rovainen, 1983 ). In our modelling results, seizures were ex-

lained by reduction of inhibitory self-connectivity (i.e., disinhibition).

hese results are informative because disruption in the self-regulation

f the inhibitory populations engenders changes in postsynaptic in-

erneuron potentials, and thereby affects activity of other populations.

ur analysis also suggests that the deep layer is likely to contribute to

eizures dynamics, which is plausible, since from an anatomical perspec-

ive the density of neurons in the deep layer of the cortex is greater than

n the superficial layers. In this DCM, such mechanisms are reflected in

he synaptic time constant of deep pyramidal populations that increased

y over 50% in this example. 

Finally, we repeated the above analysis using frequency-specific re-

ressors to characterise the relationship between disinhibition in par-

icular populations and their frequency specific correlates. Here, the re-

ressors of the GLM were the predominant empirical frequencies in the

ata of 5, 19, and 40 Hz (identified using singular value decomposi-

ion of the time frequency data). The PEB results ( Fig. 12 ) show that

eizures (which are characterised by 3 to 8 Hz activity) are best ex-

lained by the reduction in effective membrane time constant of deep

yramidal cells, with interneurons contributing to 19 Hz activity. This is

gain consistent with physiological findings from this animal model of
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Fig. 11. Model fit plots that show predicted 

and observed signals using the DCM for CSD 

approach for example normal and patholog- 

ical segments of the animal data. The right 

panel shows the results of parametric empir- 

ical Bayes (PEB) and Bayesian model reduc- 

tion (BMR) of slowly changing parameters. The 

PEB model is a hierarchical model, with a gen- 

eral linear model (GLM) of the neural param- 

eters at the between-epoch level. The design 

matrix of the GLM is simply the binarized spec- 

tral envelope encoding epochs with and with- 

out seizure activity. BMR suggests that disinhi- 

bition of deep pyramidal and inhibitory popu- 

lations was likely to explain the seizure activ- 

ity. 𝑮 1 , 𝑮 2 , 𝑮 3 and 𝑮 4 are self-inhibition pa- 

rameters of excitatory, superficial pyramidal, 

inhibitory, and deep pyramidal cells, respec- 

tively. 𝑻 1 , 𝑻 2 , 𝑻 3 and 𝑻 4 are the time constants 

of excitatory, superficial pyramidal, inhibitory, 

and deep pyramidal cells, respectively. 

Fig. 12. Parametric empirical Bayes and Bayesian model reduction modelling of slowly changing synaptic parameters. The regressors of the between-epoch GLM 

comprise the frequency content in the signal (left hand side of the figure). The right side of the figure shows the GLM parameters (top row) and the reduced parameters 

after Bayesian model reduction (bottom row). The model reduction with this design matrix shows that inhibition and deep pyramidal cells are likely to explain the 

seizures at the different frequencies. 𝑮 1 , 𝑮 2 , 𝑮 3 and 𝑮 4 are self-inhibition parameters of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells, 

respectively. 𝑻 1 , 𝑻 2 , 𝑻 3 and 𝑻 4 are the time constant of excitatory, superficial pyramidal, inhibitory, and deep pyramidal cells, respectively. 
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. Discussion 

This paper has introduced a adiabatic dynamic causal model (A-

CM) that enables one to compare competing hypotheses about the bi-

logical mechanisms that might underwrite phase transitions in electro-
11 
hysiological recordings. Crucially, A-DCM is formulated to elucidate

he most likely causal relationships between synaptic efficacy and spec-

ral activity in electrophysiological data, which is commonly used char-

cterise and understand brain states in the healthy and pathological

rain ( Shaw et al., 2017 ). The use of an adiabatic approximation and
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ean field theory furnishes an efficient way to infer the relationship

etween slow changes in synaptic parameters and their neuronal corre-

ates in spectral data. The resulting model could, in principle, be used

o infer how interventions modulate states of the diseased or healthy

rain ( Fleming et al., 2020 ; Liang et al., 2015 ; Moran, 2015 ). This would

equire construct validation experiments to test consistency and agree-

ent between predictions of the model and effects of interventions on

eal brains e.g., ( Mina et al., 2013 ). 

We have motivated A-DCM using Synergetic theory and the Adia-

atic approximation. As touched on in the introduction, A-DCM can

otentially provide complementary information alongside the conven-

ional slow-fast modelling approach. In A-DCM slow variables are mod-

lated with respect to the frequency contents of fast states, the slow

ariable is equipped with a sort of memory (since the frequency domain

epresentation of neuronal responses rests on the second order statistical

oments of fast states). In this respect, one can establish a link between

arametrised fluctuations in A-DCM and slow dynamics in slow-fast dy-

amical systems ( Sanders et al., 2007 ). Akin to A-DCM idea, averaging

f slow-fast dynamical systems allows separation of slow and fast dy-

amics, where the slow dynamics are an integral of fast states (under the

ssumption that fast states are ergodic for each value of the slow states).

e also note conceptual links between A-DCM and linear response the-

ry (LRT) in physics ( Ruelle, 2009 ). Specifically, LRT implies that if an

rgodic system – e.g., neural mass or mean field model ( Marreiros et al.,

009 ) – is left without any perturbation, it eventually reaches its equilib-

ium ( Lucarini, 2008 ). If, however, some parameters are slowly chang-

ng, LRT assures the existence of a new equilibrium for the system that

an be attained instantaneously. In addition, LTR suggests that a process

ith slowly varying parameters can be reversible (i.e., it can attain its

nitial equilibrium). Crucially and more closely related to A-DCM, LTR

stablishes a link between time domain features of dynamical systems

nd its equilibrium, thereby allowing parametric/functional expression

f the system’s response in the time/frequency domain ( Reick, 2002 ;

ucarini, 2008 ; Lucarini et al., 2007 ; Dykman et al., 1998 ). 

We have introduced the notion of circular causality in a slightly

tongue-in-cheek way’. In a dynamical setting, circular causality depends

pon bottom-up and top-down causation among the latent states gener-

ting data. This entails a generative model in which fast neuronal states

ause slow, activity-dependent changes in synaptic parameters; while,

t the same time, the synaptic parameters enslave the fast, neuronal

tates. In our adiabatic DCM estimation, the coupling between fast and

low dynamics is modelled by generating fast data features using slow

ata features as priors on the latent states. As noted above, this means

he data are used twice: as both cause and consequence of fluctuations

n hidden (neuronal) states and parameters. However, the data features

n question are not the same. The data being predicted summarise fast

euronal activity in terms of its spectral content within an epoch. Con-

ersely, the empirical priors are furnished by slower changes in spectral

ontent from epoch to epoch. This separation of temporal features char-

cterises this particular DCM and sets it apart from previous models,

pon which the current adiabatic DCM is based. In summary, our fo-

us was on establishing casual links between slow and fast states, both

n terms of forward simulation and estimation procedures. To do this,

e used models that were equipped with slowly varying parameters,

hich cause – and are caused by – changes in the spectral contents of

ast states. This builds upon the use of DCM to characterise dynamic ef-

ective connectivity ( Park et al., 2017 ; Van de Steen et al., 2019 ). For

xample, ( Park et al., 2018 ), used a principal component analysis of

he first level connectivity parameters to generate empirical (between-

poch) priors for time-varying (within-epoch) effective connectivity. In

he present setting we used the spectral features of empirical responses

o furnish empirical priors. 

In this work, we offered two forward simulations to illustrate the dif-

erent kinds of phase transition that one might infer using A-DCM. In the

rst simulation, phase transitions in brain activity were explained when

arameters moved from one region of parameter space to another, i.e.
12 
ifurcations ( Breakspear et al., 2006 ). In the second simulation, we show

hat underlying causes of paroxysmal transitions can be understood as

 hysteresis phenomenon ( Iasemidis, 2003 ; Voss et al., 2012 ), where

n one direction of parameter variations, the model produces gamma

ctivity while in reciprocal direction, the model generates pathological

pike-wave discharge activity. 

In terms of estimating parameters, in the first face validity analy-

is, we illustrated how one can establish links between fluctuation of

arameters and spectral responses in the data. This perhaps would be

ost useful for tracking dynamics of parameters with respect to changes

n spectral responses in real data. The potential application of such a

enerative model would be tracking, where we would be interested in

he modulation of brain activity with respect to changes of transmem-

rane currents, which may be subject to alteration by interventions. In

he second face validity study, we recovered parameter trends that in-

uced spontaneous seizures. In addition, we showed that it is feasible

o use Bayesian model reduction to evince underlying biological mech-

nisms that explained transition dynamics. In principle, one could ask

hether seizure dynamics are noise-driven, as opposed to itinerant dy-

amics (e.g., heteroclinic cycles in parameter space). Because the gen-

rative model of DCM for CSD is equipped with (a model of) random

euronal fluctuations, one can fit separate DCM for CSD models with

euronal fluctuations that are fixed or time varying across epochs, and

ompare their evidence using Bayesian model comparison. Clearly, this

ould rest on the assumption that seizure activity was accompanied by

hanges in the level of random fluctuations; enabling neuronal dynam-

cs to explore other basins of attraction. Furthermore, the linearisation

inherent in estimating epoch-specific parameters – precludes an ex-

licit modelling of deterministic multi-stability. At first glance, this may

ppear a limitation of linearised models. However, stochastic chaos is

istinct from multi-stability in deterministic systems and may be ap-

roximated more easily with local linear assumptions. For example, bi-

tability in a deterministic system with two basins of attractions will,

ith an appropriate level of random fluctuations, present as a single

ullback attractor ( Crauel and Flandoli, 1994 ). Please see ( Moran et al.,

011 ) for a discussion of these and related issues. 

The temporal resolution of the inferred parameters depends upon

he number of epochs and the overlap between epochs. In this paper,

he overlap between epochs was based on forward simulation of the

odel. For instance, as shown in Fig. 3 , the parameters were varied

ery quickly from one epoch to the next (which in turn induced spikes in

re-seizure activity), whereas in Fig. 7 , the parameters changed slowly

nd smoothly (prior to seizure onset). Therefore, we used overlapping

pochs to infer parameters that reproduced the data in Fig. 3 , whereas

o estimate model parameters for the data in Fig. 6 , a non-overlapped

pproach was employed. Having said this, it would be possible to use a

ragmatic approach to segmenting data into sub (quasi)-stationary seg-

ents using change point detection algorithms (a function of this kind

s now implemented and available in Matlab) to define boundaries of

pochs for the data with pathological transitions —and one may overlap

etween them (to assure proper estimation of PSDs). 

In the worked example, we used the CMC model to model the un-

erlying causes of drug-induced seizure activity. Here our results were

n line with known pathophysiology. In this example, the underlying

auses of seizures were attributed to disruption of inhibition. Our mod-

lling approach suggests that the inhibitory population is largely respon-

ible for the generation of 3 Hz waveforms. One could ask whether other

potentially better - explanations could be found for the observed data.

ere, we limited the space of possible hypotheses, by using an animal

odel, where seizure aetiology was known to have its source at the in-

ection site. Our results were consistent with what is known about this

nimal model. Nevertheless, better explanations for these data might be

ound, either through different mixtures of connectivity parameters in

he same kind of model, or by selecting a model with a different form.

or example, one might try conductance-based models, which quantify

hanges of ion dynamics. The confidence we can place in these differ-
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nt explanations for the data is based on the posterior probability of the

ccompanying models. Predictive validity can then be assessed by ask-

ng whether artificial lesions or drugs administrated to the DCM gener-

te similar changes to data features seen empirically. While our results

learly need to be further reproduced and validated; they speak to a

romising application of A-DCM. As measured above, we only consid-

red the initial phase of seizures in this animal model, where underlying

auses of the seizures can be linked with the local effects of the drug.

ore interesting questions might be investigated using A-DCM in the

econd phase of seizures in this animal model, where other brain re-

ions are contributing to the pathology. 

This paper has focused on a single neural mass model and associ-

ted transfer functions. Clearly, one question that arises is: can this ap-

roach be scaled up to large networks or graphs? DCM for CSD has

een applied to distributed brain networks in many applications e.g.,

 Papadopoulou et al., 2017 ; Rosch et al., 2018a ; Rosch et al., 2018b ).

ue to the computational efficiency of variational approaches, there are

o special constraints on the size of the network. However, a deeper is-

ue here is the inherent complexity of the models needed to explain

ultichannel or multielectrode recordings. In other words, there may

e an upper bound on the number of nodes – and their connections –

hat can be inferred on the basis of any given data. In principle, this

ound would be addressed using Bayesian model comparison. In other

ords, there will be an optimum size of the network for any given set

f data that would maximise Bayesian model evidence or its variational

ree energy bound. 

A general issue with dynamic causal models is the potential for local

inima during model inversion; especially when dealing with expres-

ive models with large numbers of parameters. However, perhaps coun-

erintuitively, more expressive models can elude local minima, because

he parameter space has more dimensions or directions from which the

earch can escape. This means that normal practice would be to start

ith an over-parameterised model and then use Bayesian model reduc-

ion to eliminate redundant parameters. Bayesian model reduction in

his setting is just an instance of Bayesian model comparison based upon

odel evidence. Crucially, the model is defined uniquely in terms of pri-

rs. This means that one can score the effect of changing the priors in

erms of its effect on the model evidence —and thereby quantify the role

f priors in explaining the data at hand. 

A key theme in this modelling endeavour is the circular causality

etween connection strengths or synaptic efficacy and the neuronal ac-

ivity these connections support. There is a large literature on models of

ynaptic plasticity ( Dem š ar and Forsyth, 2020 ) and associative plastic-

ty ( Humeau et al., 2003 ; Kujirai et al., 2006 ); namely, the relationship

etween pre-and post-synaptic activity that can be linked to slow varia-

ion of synaptic parameters. One could also consider activity-dependent

lasticity ( Rebola et al., 2010 ; Isomura and Friston, 2019 ) as a function

f the complex cross spectra or cross covariance functions summaris-

ng neuronal dynamics. In turn, this means that one could appeal to the

otion of spike timing-dependent plasticity (STDP), to model changes

n effective connectivity in terms of the cross-covariance function be-

ween a source and target population (which is well formulated in the

pectral domain). The utility of expressing plasticity (i.e., the dynam-

cs of slow parameters) in terms of covariance functions is that there is

n equivalent frequency space representation; thereby accommodating

he representation of dynamics in terms of complex cross spectra in the

enerative (dynamic causal) model. The only unknown hyperparame-

ers in this instance are the coefficients scaling the amplitude and width

f the functions that lead to increases and decreases in synaptic effi-

acy. Furthermore, there are empirical constraints on these functions.

or example, for STDP, one would normally use the first derivative of a

aussian function, with a dispersion of about 50 ms. With this formu-

ation of adiabatic dynamics, we automatically account for ideas like

pike rate adaptation ( Peron and Gabbiani, 2009 ), spike timing depen-

ent plasticity ( Caporale and Dan, 2008 ; Dan and Poo, 2006 ) and the

ransmission delays inherent in the dynamic causal modelling of cross
13 
pectra ( Friston et al., 2012 ). In the future, we hope to extend A-DCM to

ddress the delicate interplay between synaptic plasticity and spectral

uctuations. The second level PEB design matrix (which is used to con-

train model parameters based on the spectral content of the data) can

lso be augmented with regressors that encode information about fluc-

uations in other high-order statistics (e.g., Lyapunov exponents, Haus-

orff dimension, et cetera). Leveraging such prior information may help

o capture the underlying dynamics of seizure initiation, termination

nd related phase transitions. 
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ppendix A 

A technical aspect of this generative model is the form of the like-

ihood for the complex cross spectra. With ideal estimators, one could

ssume that these spectral data features had a Wishart distribution, with

ne degree of freedom for each frequency. However, we can assume

hat the cross spectra constitute the average of estimates, with consis-

ent and asymptotically normal estimates. In this setting, the variance

f the difference between the predicted and observed spectral estimates

s equal to the cross spectral density times the (effective) degrees of

reedom ( h ), which we treat as an unknown parameter. Specifically, the

recision is given by the asymptotic results where, the scaled difference

etween the sample spectral density ( g ) and the predicted density ( G )

Camba ‐Mendez and Kapetanios, 2005 ): 

 = 𝑣𝑒𝑐 ( 𝑔 − 𝐺 ) (A.1)

s asymptotically complex normal and the covariance between 𝑒 ( 𝑖, 𝑗 ) and

 ( 𝑢, 𝑣 ) is given by Q/h and: 

 = 𝐺 ( 𝑖, 𝑢 ) ∗ 𝐺 ( 𝑗, 𝑢 ) ; ℎ = 2 × 𝑚 + 1 

Here m represents the number of averages from a very long time

eries. The inverse of the covariance is thus a scaled precision, where

he hyperparameter ( h ) plays the role of the degrees of freedom (e.g.,

he number of averages comprising the estimate). We use the sample

pectral density to create a frequency specific precision matrix for the

ectorised spectral densities, under the assumption that the form of this

ample spectral density resembles the predicted spectral density (which

ill become increasingly plausible with convergence). 

ppendix B 

In the animal model of seizures in this paper, paroxysmal activity

ay be induced as a result of the disruption of the interaction between

https://www.fil.ion.ucl.ac.uk/spm/
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Fig. 13. Forward simulation of the CMC model with time varying parameters. Here the rate constants and synaptic efficacy of inhibitory, spiny stellate and deep 

pyramidal cells are changed from their prior expectation to generate spike-like activity and recurrent of seizures, as shown in LFP response of model. 
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p  
nhibitory interneurons with other populations. Such disruption can be

odelled by changing the balance between synaptic efficacies and gains

f excitatory and inhibitory populations ( Wendling et al., 2002 ). For

xample, since the drug was delivered to the deep layer of cortex, one

ay alter the rate constant/self-inhibition of inhibitory, spiny stellate

xcitatory cells and deep pyramidal cells in the CMC model to replicate

oth spike discharges and recurrent of seizures. One example of such a

orward simulation is shown in Fig. 13 . 

One should note that, this is only one way to generate pathophysiol-

gy and there may be many other plausible mechanisms that one could

mplement using the CMC model to generate paroxysmal transitions of

he data. As explained in the paper, the most compelling questions – for

pileptologists – are which synaptic parameters are likely to explain the

nderlying causes of pathognomonic data? 

ppendix C 

Many mathematical treatments of paroxysmal activity are cast in

erms of bifurcations and phase transitions – borrowing techniques from

ynamical systems theory (e.g., ( Saggio et al., 2020 )). The linearised

odels adopted by the DCM for CSD approach preclude an explicit for-

ulation in terms of dynamical instability or multi-stability. Further-

ore, the underlying generative model is predicated on ensemble dy-

amics that may or may not evince stochastic chaos (as opposed to de-

erministic chaos). Having said this, the notion of bifurcation still plays

n important role in understanding the way that DCM generates data.

his is meant in the sense of transcritical bifurcations (normally hyper-

olic fixed points), where movement in parameter space causes a thresh-

ld crossing of one or more eigenvalues of the system’s Jacobian. These

hreshold crossings are usually suppressed in DCM – and modelled as

ritical slowing by allowing for eigenvalues that approach zero from be-

ow but never reach zero (i.e., the generative model assumes, a priori,

elf-organised criticality but precludes trans-critical bifurcations). The

nsuing dynamics therefore approach a transcritical bifurcation produc-

ng similar spectral data features, while retaining dynamical stability.

ut more simply, DCM can reproduce the spectral features that are usu-

lly associated with bifurcations in deterministic systems but does so

y using a local linear approximation that is always dynamically stable.
14 
his means that seizure onsets and offsets can be modelled by move-

ent in parameter space that approximates, to first order, the kind of

hase transitions seen in deterministic formulations. 

At the onset/offset of seizures dynamics, rapid changes in brain

tates —from normal to pathological (and vice versa) makes it chal-

enging to track very fast changes in model parameters (i.e., synaptic

fficacy) that could underwrite phase transitions. However, one could

mooth spectral transitions. Specifically, to model the onset (offset) of

aroxysmal transition, one could generate so called geodesic paths be-

ween power spectral densities (PSDs) of normal and seizures activities

o identify changes in model parameters that induce transitions: let the

SDs of normal and seizure activity be denoted by 𝑃 1 ( 𝜔 ) , 𝑃 2 ( 𝜔 ) re-

pectively; then parameterised geodesic paths between these spectral

ensities can be generated via 𝑃 𝜏 ( 𝜔 ) = 𝑃 𝜏1 ( 𝜔 ) 𝑃 
1− 𝜏
2 ( 𝜔 ) , where 𝜏 ∈ ( 0 , 1 )

 Georgiou, 2007 ). By selecting different values for 𝜏, one could gener-

te spectral data features that connect the normal and seizure activity

n the frequency domain. Parameters that model these spectral features

hould trace a path in parameter space that can explain the onset (offset)

f seizure activity. 

ppendix D 

Table 1D This appendix summarises the canonical microcircuit

CMC) ( Bastos et al., 2015 ; Bastos et al., 2012 ) that we employed in this

aper, and the text is adapted from ( Jafarian et al., 2020 ). The CMC

odel comprises four neuronal populations: namely, spiny stellate cells

n the granular layer (ss), superficial pyramidal cells in the supragran-

lar layer (sp), inhibitory interneurons distributed in all layers of the

ortex (ii) and deep pyramidal cells in the infragranular layers (dp).

n this model, two conversion operators govern the dynamics of each

euronal population ( Jansen and Rit 1995 ). The first operator converts

he mean pre-synaptic firing rate 𝑚 to the mean postsynaptic membrane

otential 𝑉 as follows ( Freeman, 1975 ): 

 = ℎ ⊗ 𝑚 (1d)

Where ⊗ denotes the linear convolution operator and ℎ is the im-

ulse response function (synaptic kernel) with synaptic rate constant 𝑇 :
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Table 1D 

Default values for the parameters of the CMC model. 

Description Value [ss sp ii dp] 

𝑇 Postsynaptic rate constant of the i -th neuronal population. 𝑇 = [ 256 , 128 , 16 , 32 ] 
𝑔 𝑖 →𝑘 Intrinsic connectivity between populations i and k (self-inhibition in case of i = k which would be denoted by 𝐺 𝑘 →𝑘 ). 𝑔 = [ 2 1 1 1 ] ∗ 512 
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(2d)

The second operator then transforms the postsynaptic membrane po-

ential into a firing rate, which forms the input to the next connected

eural population ( Jirsa and Haken, 1997 ): 

( 𝑉 ) = 

1 
1 + exp ( − 𝑉 ) 

− 

1 
2 

(3d)

In effect, the dynamics of postsynaptic potentials in the population 𝑖 ,

 𝑖 , obey the following second order differential equations as follows: 

 

1 + 

1 
𝑇 𝑖 

𝑑 

𝑑𝑡 

) 2 
𝑉 𝑖 ( 𝑡 ) = 𝑠 

(
𝑉 𝑖 , 𝑉 𝑗 

)
+ 𝜔 (4d)

here the intrinsic presynaptic excitations form population 𝑗 is denoted

y 𝑉 𝑗 ; and the function 𝑠 is defined as follows ( Friston et al., 2019 ): 

 

(
𝑉 𝑖 , 𝑉 𝑗 

)
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

− 𝐺 𝑠𝑠 →𝑠𝑠 𝜎
(
𝑉 𝑠𝑠 

)
− 𝑔 𝑠𝑝 →𝑠𝑠 𝜎

(
𝑉 𝑠𝑝 

)
− 𝑔 𝑖𝑖 →𝑠𝑠 𝜎

(
𝑉 𝑖𝑖 

)
+ 𝜔 𝑖𝑓 𝑖 = 𝑠𝑠 

− 𝐺 𝑠𝑝 →𝑠𝑝 𝜎
(
𝑉 𝑠𝑝 

)
+ 𝑎 𝑠𝑠 →𝑠𝑝 𝜎

(
𝑉 𝑠𝑠 

)
− 𝑔 𝑖𝑖 →𝑠𝑝 𝜎

(
𝑉 𝑖𝑖 

)
𝑖𝑓 𝑖 = 𝑠𝑝 

− 𝐺 𝑖𝑖 →𝑖𝑖 𝜎
(
𝑉 𝑖𝑖 

)
− 𝑔 𝑑𝑝 →𝑖𝑖 𝜎

(
𝑉 𝑑𝑝 

)
+ 𝑔 𝑠𝑠 →𝑖𝑖 𝜎

(
𝑉 𝑠𝑠 

)
+ 𝑔 𝑠𝑝 →𝑖𝑖 𝜎

(
𝑉 𝑠𝑝 

)
𝑖𝑓 𝑖 = 𝑖𝑖 

− 𝐺 𝑑 𝑝 →𝑑 𝑝 𝜎
(
𝑉 𝑑𝑝 

)
− 𝑔 𝑖𝑖 →𝑑𝑝 𝜎

(
𝑉 𝑖𝑖 

)
+ 𝑔 𝑠𝑝 →𝑑𝑝 𝜎

(
𝑉 𝑠𝑝 

)
𝑖𝑓 𝑖 = 𝑑𝑝 

(5d) 

The laminar specificity of the extrinsic and intrinsic connections in

q. (3) are specified by placing prior constraints on the intrinsic (within-

egion) connectivity parameters 𝑔, 𝐺 ∗ →∗ . The random neuronal fluctua-

ions 𝜔 that drive the model have zero mean and small variance equal to

xp(-32) in the simulations of this paper. The initial states of the model

ere zero. The initialisation of variational inference uses the prior ex-

ectation of the parameters. These priors – for the neural mass models at

and – have been chosen based on years of experience with this canon-

cal microcircuit model and were originally based upon neurophysiol-

gy. Please see ( Friston et al., 2019 ; Auksztulewicz and Friston, 2015 ;

astos et al., 2015 ) for quantitative details. 
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